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The lack of standardized benchmarks for reinforcement learning (RL) in sustainability
applications has made it difficult to both track progress on specific domains and
identify bottlenecks for researchers to focus their efforts. In this paper, we present
SustainGym, a suite of five environments designed to test the performance of RL
algorithms on realistic sustainable energy system tasks, ranging from electric vehicle
charging to carbon-aware data center job scheduling. The environments test RL
algorithms under realistic distribution shifts as well as in multi-agent settings. We
show that standard off-the-shelf RL algorithms leave significant room for improving
performance and highlight the challenges ahead for introducing RL to real-world
sustainability tasks.

A RL environment is a Markov Decision Process (MDP) which describes a specific
control task and consists of:

e .Y statespace

® .</. action space

e Z transition kernel As,r,a,8') =Pr(s, =s',r, =rls=s, a=a)
e y:discount factor

A “gym” is an abstraction in code for a MDP
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Gym API

class Gym: DQN, PPO, SAC, etc.

def __init__(self):
self.observation_space =...
self.action_space=...

def reset(self, seed):

Asimplemented in
Ray RLLib and StableBaselines3

RLITb

return obs, info
def step(self, action):

return obs, reward, terminated, truncated, info

No existing RL benchmarking environments specifically test multi-agent RL
under distribution shifts.
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SustainGym Environments

EVChargingEnv ElectricityMarketEnv DataCenterEnv
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CogenEnv BuildingEnv

Control task

charging rates for EV market bids for a virtual capacity curve for dispatch set points for heating supply for

charging stations grid-connected battery  acarbon-aware data turbinesin anaturalgas  roomsin a building
storage system center power plant

Modeled after

charging networks at generic test case (IEEE (loosely) a Google data  specific combined cycle  generic DoE commercial

Caltech & JPL RTS-GMLC) center gas generation plantin reference building

the U.S. models

Single agent

all EV charging stations  single battery system single data center all 4 turbine units all buildings

Multi-agent

one EV charging station ~ N/A N/A one turbine unit one room

Actions

discrete or continuous discrete or continuous continuous mixed discrete & discrete or continuous
continuous

Rewards

energy charged - cost - profit - CO, emissions jobs scheduled - penalty - fuel consumption - - temperature deviation

CO, emissions +CO, emissions constraint penalty - energy use

Distribution Shift

MOER, EV arrivals MOER, load MOER renewable wind outdoor temperature

penetration

Distribution shifts are ubiquitous in real-world environments
Adistribution shift is a change in the transition kernel #

Arrival/departure patterns of EVs changed significantly between pre-, during, and post-COVID
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Benchmark Results
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Key takeaways

e Off-the-shelf RL algorithms have significant room for improvement,
especially compared to non-RL algorithms such as MPC

e Multi-agent RL generally performs on-par with single-agent RL

e No existing off-the-shelf RL algorithm handles distribution shift well

Future Directions

SustainGym serves as a test bed for multi-agent model-free
distributionally-robust RL

T
inE, 'R
max min Ex p ; Y R(s¢, m(8¢))

where [P denotes an uncertainty set of transition kernels

SustainGym motivates research into RL algorithms that take advantage of
knowledge of causal structure in the state space

e Forexample, the only part of EVChargingEnv that is explicitly affected by the charging action
taken is the electricity demand d, remaining for each EV. The remainder of the observation evolves
independently from the action taken.

t not affected by action t+1
N me Mit1
St = |Met+k-1]t St41 = fﬁt:t+k—1|t
= action a, Ce+1
dt ‘ dt+1

m, = carbon emissions rate
e, = estimated time until departure
d,=remaining energy demand

SustainGym motivates research into multi-agent RL algorithms that can
leverage network structure
e Forexample, BuildingEnv features controllable AC units in different rooms,

but only certain rooms share a wall, and heat transfer happens
through walls



