
ME134 Final Report
Rajeev Datta
Shivansh Gupta
Lucas Lanzendorf
Christopher Zhou

Task
Our core functionality is stacking square quadros on a 3-D printed baseplate. The robot should
track placed quadros in the workspace and continually stack them on available stacks of quadros
on the baseplate.

During execution, we anticipated a set of reasonable actions people would take when interacting
with the robotic system. Our system handles if someone moves the location of a block during
execution. Specifically, if a block is moved into the workspace, the camera system detects the
additional block and updates the available blocks for the robot to sample and place from. If a
block instead moved into the stacking workspace (the area defined by a clamped baseplate), our
system recognizes the placed block as the start of a new stack and adds it to the plausible stacks
to sample from and stack onto. Someone can even be particularly mean and remove a block from
an existing stack. In such a case, the detector system will update the stack height and continue
stacking onto the newly altered stack in future time steps. Lastly, using a depth camera, people
can stack blocks in workspace and the robot will, if sampling a stack, stack the highest block in
the chosen stack.

During the implementation phase of the project, we faced several core challenges associated with
our task. First and foremost, the necessary positional accuracy to pick up quadros in the correct
position was a persistent issue. This issue caused significant shifts in system design on both the
hardware and software level. Moreover, building on the previous issue, the act of stacking
quadros required additional considerations outside of improving positional accuracy.

Hardware
Given our challenge of designing a robot to manipulate LEGO Quadros, Some design

considerations when building this robot include the motor selection, arm design, a means of
attaching motors to the arms and to each other, and gripper design.

Given a series of HEBI X5 and X8 motors to choose from ranging in continuous torque
ratings, some napkin calculations were performed to decide which motors to place at each joint.
Given our longest moment arm of approximately three feet and the total weight of the motors
taken into consideration, we approximated 15 Nm of torque at the shoulder joint, 7Nm at the
elbow, and 3Nm at the wrist. X5s are universally lighter than X8s which meant it was critical to
constrain all X8s to the smallest moment arm possible. The first three motors were therefore X8s
with the weakest being placed at the base where it would be largely unaffected by gravity on the
arm. The motor forming the shoulder joint would experience the greatest magnitude of torque
therefore the most powerful X8 with a rating of 16 Nm of continuous torque was placed at the
shoulder. The elbow joint used the final X8, capable of providing 9Nm of continuous torque

which surpasses the expected 7Nm it will experience normally. The X5s experience a similar
selection process with the weaker motors being closest to the gripper and strongest being
attached to the second arm. The chain of three X5 motors connected by angle brackets at the end
of the entire arm were all able to operate well within their operating range given the small
moment each would be experiencing.

The initial design for the arms featured one-inch inner diameter aluminum pipes
connected to the HEBI motors using 3D-printed brackets secured into the pipes using two
transverse screws on each bracket. The geometry of the pipe and its material provided great
rigidity to the arm which is desirable in properly transferring simulated movements into the real
world with the greatest accuracy possible.

Initial design of the robotic arm with two 18 inch pipes as arms

Unfortunately we were unable to get the accuracy we desired from the pipes which we thought to
be a problem with our URDF. It took much trial and error but in the end we opted to switch to
laser-cut acrylic for the ease of debugging URDF problems to fully narrow down what was
causing the error in our real world accuracy. These acrylic arms were 18 inches as the pipes were
to maintain the same workspace as before. Two identical quarter-inch arms were pieced together
to create each section for increased rigidity and the acrylic was screwed directly into the motors
to simplify translating between each link in the URDF. While this is less rigid than the aluminum
pipes, we were successful in resolving the errors using these acrylic arms and chose to keep them
through to the end.

Finalized CAD of the robot as of demonstration day
(modified grippers excluded)

Many iterations of the gripper have existed with both large design overhauls and simple
modifications. The gripper sold by HEBI was the initial design used in early tests however the
original goal was to design a soft gripper cast out of molded silicone which would inflate and
deflate using a pump controlled through an arduino and stepper motor mechanism. This
ultimately failed due to difficulties utilizing silicone as a medium for building with ruptures and
leaking of air being far too prevalent to replace the standard parallel grippers. Reflecting on the
design also raises some concerns on whether it would have been an optimal design to begin with.
Due to the compliant nature of a material like silicone, the block is unlikely to have been
consistently oriented relative to the grippers which would make stacking very difficult. Seeking
rigidity for repeatability we turned to 3D-printed solutions, initially replicating the parallel
grippers provided with an additional one centimeter in width when fully opened to accommodate
the size of the blocks. This was successful in gripping the blocks with the addition of high
friction adhesive like athletic tape but would often grab blocks off-center and subsequently miss
in placing the blocks because the robot assumes the block would be perfectly centered within the
grippers.

The next step in the design process was to find a method of centering the blocks within
the grippers using the geometry of the grippers to move the part as it closes around.

Initial sketches for self-centering grabber chronologically from left to right, rightmost design was used in final design.

Tests of the final design were printed in PLA through the Caltech Tech Lab and were very
successful in centering blocks within the gripper. By wrapping in athletic tape like the previous
design, friction was sufficient to hold the blocks securely.

Kinematics and Planning
Task coordinates: x, y, z and ex, ey, and ez with the origin defined at the center of the axis of the
base motor. We utilized velocity inverse kinematics to convert task space movements into
corresponding joint movements.

The angular velocity Jacobian was also employed to control the orientation of the end effector.
Specifically, we kept the the orientation of the gripper normal to the table surface. When the
robot reached for blocks to pick them up, it would adjust the angle of the gripper so that it was
normal to the unit direction vector of the block.

The inverse kinematics were computed by first determining the joint space velocities. This was
achieved by inverting the 6x6 Jacobian matrix and multiplying it by the combined
velocity/angular velocity vector along with the error i.e.,

𝑞̇ = 𝐽
−1

(𝑥̇ + λ · 𝑒𝑟𝑟)

Quintic splines were applied to produce smooth movements without sharp discontinuities in
velocity or acceleration. The spline we implemented was applied to both tip and joint
movements. We also used joint movements to move the robot's joints into adjacent solutions
spaces (something about 8 multiplicities and the corresponding solution spaces). For instance, if
we grab a block from the side, we utilize joint movements to change the wrist motor joint
positions to retain the elbow up configuration while moving the end effector to place the block
away from the base. We also splined joint movements to ensure smooth movement to home

positions no matter the current position. One example of this is when the robot starts up, it first
lifts itself vertically, from its current position, to avoid colliding with any objects that are laid out
on the table.

To generate continuous commands, we used information from the image processing node to
obtain position information of blocks that could be grabbed and blocks that could be stacked
upon. By combining this together in the main node, we were able to produce trajectories on the
fly that would position the arm for grabbing and stacking.

To facilitate localization accuracy, we also created a gravity model on both shoulder joints and
the first joint of the end effector. By sending commands of nan to both position and velocity, we
were able to test how well the arm could “float” by just utilizing the gravity model. The
following torques were commanded:
τ

3
= − 0. 6 sin(θ

1
− θ

2
 − θ

3
) − 1. 2 cos(θ

1
− θ

2
 − θ

3
)

τ
2

= − 6 cos(θ
1

− θ
2
) + τ

3

τ
1

= − τ
2

cos(θ
1

− θ
2
) + 9 cos(θ

1
)

Diagram showing corresponding theta angles and torque vectors for the shoulder motors, as well as the
first joint of the end effector. Here, is pointing into the page, while both and are point out.τ

1
τ

2
τ

3

Camera Detection
The goal of our detector was to find pieces on the table, and separate them into available pieces
that hadn’t been stacked and pieces that were already stacked on the baseplate. To do this, we
attached ArUco markers on the front of each face (the face with studs). We wanted to read these
markers and get the X,Y,Z coordinates for these markers with respect to the baseplate such that
we could send these coordinates in a message that our main demo node could read these and
command our arm to go to these positions to pick up/stack the blocks.

For our camera, we used an Intel RealSense D435 depth camera. This camera is mounted
approximately 79.2 cm above our table, and we mounted it by clamping a baseplate to the vent
overhead and then by attaching the camera stand to the overhead vent.

Our camera detector itself is a separate node in our software architecture. We made use of both
the RGB and the depth images. The depth images came in handy when trying to determine the
height of the topmost block. This was essential information when the robot created taller and
taller towers.

To obtain calibration information we subscribed to the /camera/color/camera_info topic to obtain
the distortion coefficients and the camera’s intrinsic matrix K. After obtaining this, we were able
to compute the undistorted pixel coordinates from the camera, by calling the undistortPoints
method in OpenCV and passing in this distortion coefficients and camera matrix.

To ensure we could convert the camera’s pixel coordinates to the coordinates in our world frame
(essentially measured from the center of the base motor clamped to the baseplate), we taped 4
ArUco markers to the corners of our table, and we supplied the world coordinates of each of
these ArUco markers in our script. We also modified the script such that everytime our detector
ran its process function, it would supply new pixel coordinates for the ArUco markers. We would
then generate a new matrix that mapped these pixel coordinates into the world coordinates𝑀
everytime the process function ran. The benefit of updating the pixel coordinates continuously
was that even if our table was to move accidentally during the demo or overnight, the arm would
still go to the correctly supplied world frame location. This is because our baseplate was
anchored to the table, and so our measured coordinates were still the same even if our table
moved. To get the actual world coordinates from the pixel coordinates, we made use of the
getPerspectiveTransform() function in OpenCV and supplied the matrix that we generated in𝑀
the process function.

We used the RGB camera to get the X and Y coordinates with respect to the base motor attached
to the baseplate, which was then clamped to the table. We used the depth camera to get the Z
coordinate from the table. Originally we obtained this by subscribing to the topic with the depth

image that was aligned to the color image. This was the distance d from the camera to the block,
and we subtracted this distance from 79.2 (the distance from the camera to the table) to get the
height at which the block was at.

We noticed later on that the perspective transform was not as accurate when the object was near
the periphery of the camera’s field of view. So, to fix this projection error in the X and Y
coordinates, we used the following formula. Given a point that we wanted to correct,𝑝 = (𝑥, 𝑦)
and the point directly underneath the camera , our new coordinates for𝑝

0
= (𝑥

0
, 𝑦

0
) (𝑥', 𝑦')

would be:
(0.792−𝑧)

0.792 (𝑝 − 𝑝
0
) + 𝑝

Another unique thing that we did was that we used a time synchronizer in ROS to combine both
the RGB and depth images into one so that we could have access to the RGB image and depth
information simultaneously.

Software Architecture
Our software for this project consisted of two nodes. The first node, named demo, controlled
robot behaviors and movements, while the second node, named detectaruco, processed live
images from the RealSense camera and identified blocks in the workspace. The interactions
between the two nodes are visualized below (along with the hebi and camera nodes):

The detector node detectaruco identified blocks by their ArUco marker and converted their pixel
coordinates into Cartesian coordinates in the world frame. These world frame coordinates were
gathered together, along with the direction vector of each block into a single Float32MultiArray
message. The detector node would publish this message to the /detectaruco/duplo_locations topic
continuously, as new RGB images and depth maps were received.

In the demo node, which subscribes to the /detectaruco/duplo_locations topic, these messages are
processed, and used to generate new trajectories for the arm to grab and stack blocks together.
The demo node also communicates with the hebiros node to send new commands to the motors,
and receive updates on the joint states.

Behaviors and Failure Recoveries
The primary behaviors for our robot can be summarized by the diagram below:

While this diagram is simple, it has many implications that lends itself to easy recovery and
safety mechanisms. Our robot automatically goes to a home position off to the side so that our
detector is able to clearly see the table. This allows it to easily find pieces on the baseplate as
well as available pieces in the workspace region. Now, if the detector is able to see a piece on the
baseplate and any pieces in the available regions then the demo node will be notified. The demo
node will then send commands to the motors to pick up one of the available pieces and to place it
on top of a random piece in the baseplate region. Once this is done, the robot goes back to the
home position off to the side to once again allow the detector to clearly see the table.

This is simple functionality, but some failure mechanisms are inherently handled with this
behavior model. In particular because nothing is hard coded, the robot will never start moving
erratically towards the Lego baseplate if there is nothing available to be stacked upon. Likewise,
if there is no piece available in the delineated workspace region, the arm will simply stay in its
home position. Moreover, the robot is smart enough that if a block is added or removed by a
person, or if it changes locations while the robot is running, the robot will still be able to stack an
available block on top of a block in the baseplate (as long as one exists). We also support the
functionality of having multiple pieces or stacks on the baseplate, so the robot can pick up any

available piece and choose any block to stack it onto. Additionally, if the robot fails to pick up or
put down the piece, it is up to the user to place the piece back in the available region, otherwise
the robot will not see it. Another very useful fail-safe feature of our detector is that even if the
table moves slightly, the robot will still be able to grab and place the piece accurately. This was
very useful especially in the off chance that people bumped into our table during the demo.

Shortcomings
One flaw in our robotic system is that it can only recognize blocks if they are rightside up. While
working through the project, we attempted several times to implement a color detector that could
recognize blocks no matter which way they were arranged on the table. However, we found that
this detector was not robust enough to always draw accurate enough bounding boxes around the
blocks. Moreover, the detector could not always identify every block on the table surface, even if
we placed only blocks of the same color.

Because of these issues, we decided to use a ArUco detector system instead, which would
identify blocks in the rightside up orientation, as long as it could see its ArUco tag. This
adjustment enabled our system to be more robust, since ArUco markers are very distinctive and
easy for the camera to detect.

Another observation we made was that when the arm lowers itself down to stack a block, it tends
to apply more pressure to one side of the block then the other. This makes the process of stacking
more challenging, since ideally, the arm would apply equal pressure to all sides of the block,
allowing it to more easily lock in. For this reason, we ended up 3D printing 2x2 quatro blocks, so
that there would be greater tolerance, and make it easier for blocks to be stacked.

While testing/running our demo, another issue we noticed was that if there was a stack that was
adjacent to another, shorter stack and if the robot tried to place a piece on the shorter stack, the
robot would accidentally knock over the taller stack. Something that we would need to work on
is intelligent piece placement such that the tip could rotate and avoid collisions between adjacent
towers.

